Module 2: Data Quality Standards

The goal of this module was to calculate an accuracy estimate for two similar datasets using the methods described in the the National Standard for Positional Accuracy (1999) Positional Accuracy Handbook. Road centerline data created by Street Maps USA and ABQ Streets were provided and viewed using ArcGIS Pro in order to compare to accurate aerial orthophotos. A point feature class was created for the StreetsMaps USA, ABQStreets, and the reference imagery. Then, 20 random sample points were selected within a study area and a point was placed at the center of the mapped road intersection for each dataset and the actual intersection location according to the aerial imagery. Therefore, each sample location had three points. A screenshot of the 20 sample locations is shown below, in which the red lines are the StreetMaps USA data, the green are the ABQ Streets, and the blue are the reference points based on aerial imagery. 


A screenshot of a sample intersection is also shown below: 

Then, the ADD XY Tool was used to calculate the X and Y coordinate for each point for all three datasets. The tables were then exported to an excel file using the TABLE TO EXCEL tool. Following the accuracy estimate worksheet, the independent points (imagery-based) X and Y coordinate was compared to the test dataset and the NSSDA accuracy, sum of the difference in X and Y, average, and the Root Mean Square Error was calculated. See table below for the StreetMap USA NSSDA value calculation: 

Point

number

Point

description

x

(independent)

x

(test)

 

diff in x

 

(diff in x) 2

y

(independent)

y

(test)

 

diff in y

 

(diff in y) 2

(diff in x)2 +

(diff in y)2

1

SM1

1517725.19

1517606.935

118.25042

13983.1618

1486344.76

1486204.189

140.57321

19760.8273

33743.98903

2

SM2

1523097.74

1523121.269

-23.52948

553.636453

1485862.11

1485796.345

65.761679

4324.59849

4878.234942

3

SM3

1522770.6

1522784.497

-13.900563

193.225645

1482315.61

1482274.676

40.92938

1675.21415

1868.439799

4

SM4

1533213.77

1533265.664

-51.894909

2693.08161

1482951.66

1482980.079

-28.418578

807.615595

3500.697209

5

SM5

1532477.37

1532563.089

-85.719645

7347.85751

1497007.24

1497068.248

-61.007752

3721.9458

11069.80331

6

SM6

1506592.75

1506635.582

-42.835872

1834.91196

1478799.66

1478667.53

132.1267

17457.466

19292.37794

7

SM7

1499494.27

1499571.49

-77.224911

5963.6869

1493712.06

1493712.057

0

0

5963.686905

8

SM8

1522336.01

1522283.026

52.982506

2807.1459

1496833.92

1496820.159

13.759487

189.32348

2996.469379

9

SM9

1504327.04

1504401.264

-74.228198

5509.82538

1487462.36

1487524.498

-62.137999

3861.13093

9370.956308

10

SM10

1515060.27

1515045.331

14.936978

223.113312

1493255.77

1493242.151

13.619067

185.478993

408.5923045

11

SM11

1510697.04

1510711.978

-14.935666

223.074109

1496110.01

1496136.642

-26.632165

709.27219

932.3462992

12

SM12

1505631.65

1505650.77

-19.119384

365.550857

1493215.6

1493210.819

4.7798461

22.8469285

388.3977858

13

SM13

1530454.49

1530539.669

-85.182244

7256.01475

1477870.24

1477896.217

-25.979935

674.957018

7930.971768

14

SM14

1527894.22

1527949.577

-55.354548

3064.12599

1483982.97

1483960.566

22.405467

502.004951

3566.130945

15

SM15

1515332.04

1515234.57

97.474871

9501.35041

1481253.59

1481053.838

199.75485

39902

49403.35044

16

SM16

1497736.46

1497900.517

-164.06004

26915.6965

1478936.16

1478969.112

-32.949409

1085.66356

28001.36007

17

SM17

1500867.09

1500680.775

186.31032

34711.5364

1501038.75

1500746.234

292.52041

85568.1916

120279.7281

18

SM18

1503852.83

1503906.505

-53.671153

2880.59261

1483358.91

1483356.21

2.7030786

7.30663383

2887.899245

19

SM19

1517726.27

1517704.649

21.622988

467.553621

1499856.06

1499887.726

-31.662338

1002.50366

1470.057284

20

SM20

1520651.16

1520611.004

40.156744

1612.56408

1490912.66

1490840.067

72.591062

5269.46231

6882.026382

sum

314835.5154

average

15741.77577

RMSE

125.4662336

NSSDA

217.1569571



The ABQ Streets NSSDA worksheet table is shown below: 

Point

number

Point

description

x

(independent)

x

(test)

 

diff in x

 

(diff in x) 2

y

(independent)

y

(test)

 

diff in y

 

(diff in y) 2

(diff in x)2 +

(diff in y)2

1

ABQ1

1517725.19

1517730.615

-5.4301073

29.4860648

1486344.76

1486336.919

7.8431602

61.5151614

91.00122617

2

ABQ2

1523097.74

1523089.293

8.4465054

71.3434537

1485862.11

1485854.867

7.2398149

52.41492

123.7583737

3

ABQ3

1522770.6

1522764.418

6.1778092

38.1653261

1482315.61

1482329.892

-14.286389

204.100903

242.2662296

4

ABQ4

1533213.77

1533221.924

-8.1548393

66.5014045

1482951.66

1482941.528

10.132198

102.661428

169.1628324

5

ABQ5

1532477.37

1532475.052

2.3169245

5.36813914

1497007.24

1497012.26

-5.019675

25.197137

30.56527619

6

ABQ6

1506592.75

1506588.523

4.2230887

17.8344779

1478799.66

1478806.293

-6.6364697

44.0427296

61.87720746

7

ABQ7

1499494.27

1499486.543

7.7224255

59.6358556

1493712.06

1493717.463

-5.4058291

29.2229881

88.85884369

8

ABQ8

1522336.01

1522332.687

3.3215157

11.0324663

1496833.92

1496831.863

2.0560983

4.22754002

15.26000636

9

ABQ9

1504327.04

1504326.755

0.2811674

0.07905512

1487462.36

1487451.957

10.403194

108.226454

108.3055093

10

ABQ10

1515060.27

1515057.193

3.0751251

9.45639428

1493255.77

1493253.574

2.1965179

4.82469098

14.28108526

11

ABQ11

1510697.04

1510699.021

-1.9793267

3.91773437

1496110.01

1496104.972

5.0383758

25.3852302

29.30296457

12

ABQ12

1505631.65

1505626.871

4.7798461

22.8469286

1493215.6

1493216.161

-0.5623348

0.31622047

23.16314905

13

ABQ13

1530454.49

1530456.467

-1.9793268

3.91773439

1477870.24

1477867.178

3.059049

9.3577808

13.27551519

14

ABQ14

1527894.22

1527890.268

3.9540603

15.6345931

1483982.97

1483974.186

8.7863998

77.2008206

92.83541373

15

ABQ15

1515332.04

1515333.418

-1.3730288

1.88520795

1481253.59

1481257.712

-4.1187582

16.9641688

18.84937677

16

ABQ16

1497736.46

1497731.652

4.8047804

23.0859148

1478936.16

1478926.552

9.610217

92.3562707

115.4421856

17

ABQ17

1500867.09

1500864.926

2.1591164

4.6617837

1501038.75

1501037.135

1.6194193

2.62251899

7.28430269

18

ABQ18

1503852.83

1503850.131

2.7027505

7.30486027

1483358.91

1483356.21

2.7030786

7.30663383

14.61149409

19

ABQ19

1517726.27

1517727.43

-1.1581342

1.34127475

1499856.06

1499863.014

-6.9501173

48.3041309

49.64540561

20

ABQ20

1520651.16

1520642.28

8.8805597

78.86434

1490912.66

1490926.945

-14.286717

204.110278

282.9746179

sum

1592.721015

average

79.63605076

RMSE

8.923903337

NSSDA

15.4454919



While creating sample points, I noticed that both datasets were not accurate when compared to the aerial orthophotos road intersection locations. Before making calculations, the Street Maps USA data seemed to be the least accurate of the two. The final step was to define the accuracy of each dataset using a formal horizontal accuracy statement. Both statements are defined below:
  • ABQStreets Positional Accuracy Statement: Using the National Standard for Spatial Data Accuracy, the data set tested 15.4 feet horizontal accuracy at 95% confidence interval.

    StreetMaps USA Positional Accuracy Statement: Using the National Standard for Spatial Data Accuracy, the data set tested 217.2 feet horizontal accuracy at 95% confidence interval.

In other words, a road intersection point would be within a defined distance from the actual road intersection 95% of the time. Therefore, the final horizontal accuracy value calculated using the NSSDA method confirms the observation that ABQ Streets is more accurate. In fact, the ABQ Streets dataset is approximately 14 times more accurate than the StreetMaps USA road data!

Comments